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Abstract
Tunnelling rates are qualitatively different for integrable and near-integrable
systems. Here a uniform result is derived which interpolates between the
two regimes and is applied successfully to two-dimensional double-well and
pendulum potentials. When the underlying symmetry is reflection in a single
coordinate, the splitting remains positive after perturbation, but for potentials
whose underlying symmetry is reflection through the origin, the splitting is
predicted to oscillate as a function of a perturbation parameter, with regularly
spaced zeros where tunnelling switches off.

PACS numbers: 03.65.Sq, 05.45.Mt

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The classical geometry that underlies tunnelling between tori changes qualitatively when an
integrable system is even slightly perturbed. Whereas in exactly integrable systems a pair of
congruent invariant tori connect smoothly and form a single manifold when continued into
complex phase space, those of near-integrable systems are expected to intersect transversely
or even to encounter a natural boundary before any such intersection occurs in the first place.
As a result, semiclassical predictions of tunnelling rates are different in each case and in
particular scale differently with h̄. In exactly integrable systems the energy level splitting
between states supported on congruent tori is approximated in the simplest topology by the
quasi-one-dimensional formula [1]

�Eint = h̄ω

π
e−K0/h̄, (1)

where iK0 = ∫
p · dq is an imaginary action connecting the two real tori and ω is a frequency

of motion. In d-dimensional near-integrable systems, on the other hand, a semiclassical
approximation of Wilkinson’s [2] (see also [3–6])

�Eni = 2

(
h̄

2π

) d+1
2 ω e−K0/h̄

√
i{JR, JL} , (2)
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provides an alternative structure, where JL and JR are actions for analytic continuations of
the two real tori, which we label L and R for ‘left’ and ‘right’, and the Poisson bracket is
computed on their intersection in complex phase space1. These two formulae are utterly
different. We find in fact that the amplitude in the near-integrable version diverges in the
integrable limit (where the actions JL and JR coincide and the Poisson bracket vanishes) and
cannot be expected to describe tunnelling there. It should therefore be replaced by a uniform
version just as standard WKB approximations for one-dimensional wavefunctions are replaced
by Airy functions near turning points.

The purpose of this paper is twofold. First we derive a uniform result which interpolates
between the integrable and near-integrable forms of tunnelling and which may in turn be
useful for understanding tunnelling in mixed systems, as described below. Second, we
demonstrate that, even though natural boundaries [7–9] may prevent the intersection of
analytically continued tori from occurring [5] and appear formally to invalidate Wilkinson’s
formula, there may be approximations of the classical data which are sufficiently accurate to be
used in semiclassical approximation and which are sufficiently smooth for natural boundaries
to be breached and an intersection defined. In other words, Wilkinson’s formula may give a
good description of tunnelling even when natural boundaries prevent intersection of the exact
classical tori.

In addition to being an interesting problem in its own right, understanding the mechanism
for tunnelling between near-integrable tori may be of practical importance in describing
tunnelling in mixed systems. Tunnelling between regular states imbedded in a mixed phase
space has been the subject of much interest in recent years [10–16] and has recently been
observed in experiments with cold atoms [16, 17]. In addition to the regime of chaos-
assisted tunnelling described in [10, 11], in which tunnelling rates are enhanced by an
intermediate diffusion in the stochastic regions of phase space, a mechanism of resonance-
assisted tunnelling has been identified in [12]. In resonance-assisted tunnelling, the system
tunnels between initial and final tori by hopping between resonances that lie between them.
An important part of the theoretical analysis of resonance-assisted tunnelling is to estimate
the coupling between tori on either side of a participating resonance, and this is achieved
using quantum perturbation theory or using integrable models of tunnelling such as that for
pendulum Hamiltonians described in [18]. By reaching a better understanding of tunnelling
in near-integrable problems we therefore shed light on this important component of the theory
of resonance-assisted tunnelling. We emphasize that by the time the perturbation parameter is
large enough for the resonance-assisted mechanism to have taken over, the direct tunnelling
route underlying our calculation will no longer be dominant in the overall tunnelling rate.
It may still, however, control tunnelling across individual resonances and be important as a
factor in the net result.

The uniform result we derive is of the form

�Euni(ε) = M
( ε

h̄

)
�Eint(0), (3)

where ε is a perturbation parameter and �Eint(0) is the splitting in the integrable limit ε = 0.
The modulation function M(ε/h̄) describes the transition from the integrable form of the
splitting in (1) to the near-integrable form in (2). We will show that it can be written as an
integral

M(x) = 1

2π

∫ 2π

0
exf (α) dα, (4)

1 The version written by Wilkinson looks slightly different but can be rearranged to give (2) using standard identities
of Hamiltonian mechanics [5].



Tunnelling in near-integrable systems 8285

where the phase function f (α) is computed using canonical perturbation theory, applied
to the complexified system. When x is large, a steepest descents approximation of the
integral in (4) leads to an asymptotic expression which is of the form given in (2), but with
classical data approximated within perturbation theory. The important point is that Wilkinson’s
formula correctly captures the essential behaviour of the splitting even in generic problems
where natural boundaries are expected to intervene, provided that perturbation theory leads
to a sufficiently accurate solution of the Hamilton–Jacobi equation for the phase of WKB
approximations. We note that similar uniform approximations for the trace formula in the
vicinity of bifurcations can be arranged so that semiclassical approximations with exact
classical data are recovered from the asymptotics [19–23]. This is achieved by using the exact
classical data (orbit actions etc) to evaluate the arguments of the uniform approximation. The
same cannot be achieved here, however, because we cannot compute the intersection of the
complex tori exactly, and we can at best recover a version of (2) with additional classical
approximations.

We find that the qualitative nature of M(x) depends on the underlying symmetry of
the problem. Symmetry of the Hamiltonian with respect to reflection in a single Cartesian
coordinate leads to an exponent f (α) which is real and M(x) asymptotes to an exponentially
decaying or growing function of x. We find necessarily that M(x) > 0 and this is consistent
with the observation that splittings in such systems are always positive. When the underlying
symmetry is inversion through a point, on the other hand, splittings can be negative—that is,
the even level in a doublet can lie higher than the odd level—and M(x) can change sign.
We find in this case that f (α) is generally complex and may lead to oscillatory modulation
functions M(x). In particular, for any given doublet the theory may then predict a regular
sequence of perturbation parameters at which the splitting will vanish. We therefore see a
phenomenon very similar to ‘coherent destruction of tunnelling’ [24, 25], which has been
extensively investigated in the context of driven systems in recent years, with the difference
that here it is observed in autonomous problems.

We conclude this section by outlining the rest of the paper. In section 2 we provide
an overview of the complex structure of exactly integrable systems and show how the
splitting formula (1) can be obtained using a derivation that can also incorporate nonintegrable
geometry. In section 3 canonical perturbation theory is applied to the complexified dynamics
and used to approximate the classical data needed for the splitting formula. Applications to
model problems with different symmetry types are considered in section 4. We conclude in
section 5.

2. Complex tori and approximation of splittings

We begin by introducing notation to describe complexified tori in the integrable limit, which
will help to develop complex perturbation theory later. The complexification of the multi-
dimensional integrable problem is best illustrated by first considering the one-dimensional
quartic oscillator. We then discuss the complexification of tori for multi-dimensional tunnelling
in integrable systems. The section ends with a derivation of the splitting formula from Herring’s
integral, using a method that allows us to determine the leading order result when a perturbation
is introduced.

2.1. The complex θ -plane for a 1D double well

Consider first the complex dynamics of a one-dimensional symmetric double well. At energies
below the barrier height, the tori are one-dimensional orbits to the left and right of the barrier,
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which we denote by λL and λR , respectively. We let (I, θ) be action-angle variables for
the left-hand well and choose θ = 0 to correspond to the inner turning point, where the orbit
reflects from the barrier. The complexified torus is described by letting θ be a complex variable
while keeping I real and fixed (at a value dictated by Bohr–Sommerfeld quantization).

Evolution of θ along the real axis leads to a periodic evolution on λL and we have, for
example,

x(θ) = x(θ + 2π) (5)

in a strip around the real axis. We can identify λL with a contour CL on the real axis of
the θ -plane running from 0 to 2π . Evolution of θ along the imaginary axis leads to periodic
evolution under the potential barrier and defines a complex periodic orbit whose imaginary
action appears in the exponent of the integrable splitting formula (1). Let the imaginary period
be 2i�, so that

x(θ) = x(θ + 2i�) (6)

in a strip around the imaginary axis. We let C0 denote a contour on the imaginary axis running
from 0 to 2i� and which can be identified with the barrier-crossing periodic orbit.

Let C0/2 denote a contour running from 0 to i�. Travelling up the contour C0/2, we go
from the inner turning point on the left-hand well to the inner turning point in the right-hand
well. The overall effect is a reflection across the centre of the barrier and this extends to the
symmetry

x(θ + i�) = −x(θ) (7)

on the imaginary axis of the complex θ -plane. Starting at i�, evolution of θ parallel to the
real axis generates real periodic motion in the right-hand well. We can therefore identify the
right-hand torus λR with the contour

CR = CL + i� (8)

in the θ -plane.
We define the fundamental unit cell B to be the rectangle in the complex θ -plane bordered

by the contours CL and C0/2, so that the origin is at the lower left and 2π + i� is at the upper
right. Other unit cells are obtained by translating B by integer multiples of 2π and i�. The
boundary of B is a contour C obtained by concatenating C0/2, CR,−C0/2 + 2π and −CL

(see also figure 3) and we denote by W the one-dimensional web obtained by translating the
real and imaginary axes by all integer multiples of 2π and i�. The preceding discussion has
established that, as θ moves along the boundary C, or more generally along the web W, x(θ)

moves on the real axis in the complex x-plane, bouncing between turning points as illustrated
at right in figure (1). Furthermore, the periodicity conditions in equations (5)–(7) hold for
θ ∈ W and the symmetry

Rx : (x, p) �→ (−x,−p)

is represented by the shift

Rx : θ �→ θ + i�

on this web.
The arguments used to establish these conditions have been entirely dynamical and hold

for any double-well potential. If we assume that the potential is analytic in a strip containing
the real axis of the complex x-plane, then x(θ) and p(θ) can be extended to analytic functions
on an open neighbourhood Wε of the web W , on which equations (5)–(7) apply. Since a
nonconstant entire function cannot be bounded on the complex plane, a nontrivial biperiodic
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Figure 1. The contours defined in the main text are illustrated schematically.

function such as x(θ) must contain singularities in each unit cell. In the simplest case of a
quartic oscillator represented by the potential U(x) = (x2 − 1)2, position and momentum
are elliptic functions of θ and there is a single simple pole at the centre of each unit cell,
corresponding to escape to infinity in finite imaginary time having started at one of the outer
turning points. In this case the periodicity conditions in equations (5)–(7) can be extended to
the whole complex plane. More generally there may be branch points inside each unit cell
which prevent the biperiodicity conditions from applying globally. Crossing a branch cut may
lead one to a Riemann sheet on which behaviour under translations by 2π and i� is entirely
different, for example.

Irrespective of the nature of these singularities, however, position and momentum are
single-valued, analytic and biperiodic functions of θ in the thickened web Wε and this
observation suffices to determine everything we need in the calculation that follows. Branch
points and any other singularities can be contained within a region in the interior of each unit
cell, indicated schematically by hatching in figure 1, which we exclude from our discussion.
We do not require a detailed understanding of them, except possibly as an aid to evaluating
certain contour integrals as will be discussed in section 4.

2.2. Complex angles in the multi-dimensional case

We will confine our discussion in this section to two-dimensional double wells which are
separable in Cartesian coordinates (x, y), with a double well in the x degree of freedom and
a single well in the y degree of freedom. It should be obvious how to adapt the discussion
to other problems such as those based on the pendulum. For illustration we will use the
Hamiltonian

H0 = 1
2p2

x + 1
2p2

y + (x2 − 1)2 + 1
2
2y2. (9)

The real tori then project onto boxes in configuration space which are congruent with respect to
reflection in x. We will show below that these are connected in a slice through real configuration
space by a complex torus as illustrated schematically in figure 2. Other topologies can arise
in integrable tunnelling (see [26] for example) but the main ideas are best illustrated in this
simplest case.

To explain this structure in more detail, we first construct action-angle variables (I, θ)

for the x degree of freedom with the angle variable being continued into a rectangular web
W (or more generally a neighbourhood Wε of it) in the complex plane as described in the
previous section. These are augmented by action-angle variables (J, φ) for the y degree of
freedom. Since the actions are held fixed in this discussion we will suppress them notationally
and write x(θ) and y(φ). If we let θ vary over the web W , and let φ range over a contour C1

going from 0 to 2π on the real axis of the φ-plane, three tori, two real and one complex, are
covered in phase space. These are illustrated schematically in figure 2. The left and right tori
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C0
CL CR

C1

Figure 2. Schematic illustration of the real and complex tori.

correspond to (θ, φ) ∈ CL × C1 and (θ, φ) ∈ CR × C1, respectively. Connecting them is a
complex torus on which px is imaginary and this corresponds to (θ, φ) ∈ C0 × C1. Note that
the tori illustrated in figure 2 represent two-dimensional subsets of a single four-dimensional
complexified manifold, which is defined by letting θ and φ each be generically complex
instead of being restricted to one-dimensional contours. The full four-dimensional manifold
is difficult to visualize, however, and the restricted representation in figure 2 captures the main
topological features needed for our discussion of tunnelling.

We will later treat explicitly the cases where the Hamiltonian in (9) is perturbed either by

H1 = x2y2 (10)

or by

H1 = xy. (11)

It will be important when discussing splittings to establish the discrete symmetry underlying
them and these two examples are representative of two distinct symmetry types that arise
in two-dimensional potentials. In the case of perturbation (10), the perturbed problem is
symmetric with respect to Rx : (x, y, px, py) �→ (−x, y,−px, py) and a splitting will be
defined as the energy difference between states that are respectively even and odd with respect
to this symmetry. It will be important later to have established that this is reflected in a
symmetry with respect to the shift

Rx : (θ, φ) �→ (θ + i�,φ)

in the angle variables. Perturbation (11), on the other hand, is symmetric with respect to
Rxy : (x, y, px, py) �→ (−x,−y,−px,−py) and this corresponds in angle variables to the
shift

Rxy : (θ, φ) �→ (θ + i�,φ + π).

We combine both of these symmetry types in one notation by writing

R : (θ, φ) �→ (θ + i�,φ + σπ), (12)

where σ = 0 for problems with symmetry type R = Rx and σ = 1 for the case R = Rxy .
Note that the unperturbed problem (9) is symmetric with respect to both Rx and Rxy and

that the signs of splittings depend on which of these we adopt as the symmetry with respect
to which even and odd states are defined. States that are even with respect to Rx may be odd
with respect to Rxy and in particular the sign of the splitting may depend on which of Rx and
Rxy we regard as being the underlying symmetry. In the case of perturbed problems, this of
course is dictated by the symmetry of the perturbation itself. We will adopt the convention
that Rx underlies the perturbation (10) and Rxy underlies the perturbation (11).
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2.3. Calculating the splitting

We now derive the splitting formula for the integrable case using the same approach as used
by Wilkinson to treat the nonseparable case. A simple modification of this calculation will
also give us the splitting in the perturbed case. We start with a version of Herring’s formula
(see [2, 5])

�E = h̄2
∫



(
∂ψ∗

L

∂n
ψR − ψ∗

L

∂ψR

∂n

)
ds

which gives the splitting as an integral involving extensions into the region of evanescent decay
of quasimodes ψL and ψR that are localized on the tori λL and λR , respectively. Here  is a
contour separating the two tori in configuration space and (s, n) are orthogonal coordinates
such that  is defined by the condition n = 0 and s is an arc length on . The quasimodes ψL

and ψR are related by the symmetry

ψR(x) = ψL(Rx) (13)

that underlies the splittings, as outlined in the previous section.
Although the derivation here is in two dimensions, it is easily generalized to higher-

dimensional problems. Note also that in starting with the Herring formula we have assumed
that the Hamiltonian is of kinetic-plus-potential form and that λL and λR can be separated in
configuration space by a contour . Generalizations of the Herring formula are possible which
express the splitting as an overlap on a section through phase space (see [27, 28] for example)
and this would allow a derivation of the same result for more general Hamiltonians or for tori
which are not separated in configuration space (such as the pendulum example described in
section 4). We confine our derivation here, however, to the restricted case in order to keep the
emphasis the main ideas.

We substitute WKB approximations for the localized wavefunctions. We have

ψL ≈
∑

branches

√
ρL eiSL/h̄

with analogous notation for ψR (we assume that Maslov indices have been absorbed into the
sign of ρL and the choice of branch for the square root). We apply this approximation in
the forbidden region separating the real tori, where SL is a complex-valued action integral
over the analytic continuation of λL. Even though we take only the exponentially decaying
branches, the others being removed by Stokes’ phenomenon, a sum over branches remains
because several angles φ will in general project to a given point in configuration space.

Let us adopt the convention that λL and λR denote the decaying branches of
the complexified tori in the forbidden region—the exponentially growing branches then
correspond to λ∗

L and λ∗
R .2 It is useful to outline how these branches are understood in terms

of the complex angle variables. The decaying branch λL of the left-hand torus is described
by letting φ be arbitrary and letting θ descend along the imaginary axis (or at least within
a neighbourhood of it) and the growing branch λ∗

L is described by letting θ ascend along it.
The decaying branch λR of the right-hand torus can described by letting θ descend along the
imaginary axis, starting from θ = i�. In the integrable limit, λ∗

L joins smoothly with λR

(a branch growing from the left is decaying from the right) and they are jointly described
by placing θ in a neighbourhood of the imaginary axis between 0 and i�. A perturbative

2 λL and λR extend to form a single four-dimensional complex manifold in the integrable case so distinguishing
between λL, λR, λ∗

L and λ∗
R is somewhat unnatural in a global description. From a practical point of view it is very

useful however to reserve different symbols for the different branches of the complex tori corresponding to real (or
nearly real) position coordinates in the forbidden region.
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calculation in the next section will approximate λ∗
L and λR as manifolds which are distinct in

the near-integrable case, but which intersect along a complex orbit. If the perturbation has
symmetry, this intersection will be represented by the ‘midpoint’ θ = i�/2 for a value of φ

corresponding to y = 0.
As explained in the appendix, when WKB approximations for the quasimodes ψL and

ψR are inserted in the Herring formula, dominant contributions in a steepest descents analysis
are obtained from points on  corresponding to the intersection of λ∗

L with λR . Denote by ̃

the surface of section obtained by fixing the energy E in phase space and restricting x ∈ .
Then, in an integrable problem, λ∗

L ∩ ̃ ∩ λR is topologically a one-dimensional circle and
the Herring integral can be manipulated into an integral over this surface with an integration
measure provided naturally by the angle variables (θ, φ). To describe this integral in more
detail, we introduce new angle-like variables

α = φ − 


ω
θ, t = θ

ω
(14)

on each of λ∗
L and λR , where ω and 
 are respectively the frequencies (on the real tori)

corresponding to the angles θ and φ. We note that α is constant on each individual orbit and
is naturally used as a 2π -periodic coordinate on the circle λ∗

L ∩ ̃ ∩ λR . Then it can be shown
that in the integrable case Herring’s formula becomes

�E = h̄ω

2π2

∫
λ∗

L∩̃∩λR

ei(SR−S∗
L)/h̄ dα. (15)

The action difference in the exponent takes a constant value

SR − S∗
L =

∮
C0/2

p · dq = iK0

and the integrand in (15) is therefore constant, while the integral itself gives (1). We have
therefore recovered the integrable form of the splitting formula.

Although there are simpler derivations of the splitting formula in the integrable case, the
present approach has the advantage of extending easily to near-integrable problems. Before
describing details, we note that natural boundaries may in principle arise in the exact classical
dynamics which prevent straightforward WKB approximation of the quasimodes ψL and
ψR from being extended as far as the dividing contour . Semiclassical approximation
of the splitting may nevertheless be possible even in this situation, however, if there are
approximations of the complex tori that are sufficiently smooth to be continued beyond the
natural boundary and which at the same time satisfy the Hamilton–Jacobi equation accurately
enough to be used in WKB approximations of ψL and ψR along . We show in fact that a
calculation of the perturbed tori at leading order in classical perturbation theory suffices to
describe the splitting quantitatively if ε = O(h̄).

We construct a leading-order semiclassical description of the splitting by approximating
the amplitude in (13) by its unperturbed value and approximating the actions using first-order
classical perturbation theory. Then the derivation in the appendix can be repeated to give
(15), but with an action difference SR − S∗

L that is nonconstant and which leads to a nontrivial
integral over α. We will show in fact that a truncated perturbation theory leads to an action
difference that depends on the angle variables through α alone. That is, there is a function
f (α) such that

SR − S∗
L = iK0 + iεf (α) + O(ε2)

and the integral in (15) takes the form predicted in (3). If ε/h̄ is large enough then we
may evaluate the resulting modulation integral M(ε/h̄) using the method of steepest descents
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and the resulting contributions are once again identified with points in λ∗
L ∩ ̃ ∩ λR , which

are isolated in the perturbed system. The result is in fact an application of Wilkinson’s
formula (2) in which the classical data are approximated using classical perturbation theory.
If ε/h̄ is not large, on the other hand, then the modulation integral receives significant
contributions from the whole range 0 < α < 2π and, once integrated, produces a uniform
interpolation between the integrable and Wilkinson forms of the splitting formula.

We finally point out that there is an element of redundancy in the integral (15). The contour
 can, for example, be chosen arbitrarily in Herring’s formula as long as it separates the real
tori in configuration space, but we have more freedom even than that. The circle λ∗

L ∩ ̃ ∩ λR

is in the integrable limit topologically equivalent to a loop generated on the complex torus by
letting φ range over the contour C1, as illustrated in figure 2. Having established that the action
difference SR − S∗

L is a function of α, we see that the same result is obtained if the integral
in (15) is taken over any other loop that is similarly obtained by a continuous deformation of
λ∗

L ∩ ̃ ∩ λR . We could, for example, keep θ fixed at some complex value such as i�/2 and
let φ vary over C1, in which case we write,

�E = h̄ω

2π2

∮
C1

ei(SR−S∗
L)/h̄ dφ, (16)

where we have noted that dα = dφ over a loop on which θ is fixed.

3. A perturbative calculation of complex tori

We now outline how the phase difference in the exponent of (15) may be computed using
canonical perturbation theory. While the basic equations underlying this perturbation
expansion are standard and given in textbooks ([30] for example), it should be noted that
we will be interested in solving them for angle variables in the complex plane, letting θ roam
around the complex web W described in section 2.1 for example. We will in particular be
interested in the degree to which solutions fail to be biperiodic when extended to the complex
web, and this aspect is somewhat novel. Note also that while we expect in the real case to see
the toral foliation of phase space recovered at each order in perturbation theory, resonances
excepted, the global complex foliation of phase space by invariant manifolds is destroyed at
leading order and there is no global KAM theorem for complexified tori for example.

3.1. Perturbation theory for complex angles

Let

F
L,R
2 (θ, φ, Ī , J̄ ) = θ Ī + φJ̄ + GL,R(θ, φ, Ī , J̄ )

be a type-2 generating function for the transformation from (θ, φ, I, J ) to action-angle
variables (θ̄ , φ̄, Ī , J̄ ) for the perturbed system. The notation here acknowledges that there are
different generating functions, labelled by L and R, for the left and right tori. We stress that in
dealing with complexified tori it will be necessary to let the angle variables be complex here.
Whereas GL(θ, φ, Ī , J̄ ) should have period 2π along the real axis in the complex θ -plane,
we will demand that GR(θ, φ, Ī , J̄ ) has period 2π along the real axis translated by i� and
we will see that these different boundary conditions give rise to different solutions. In fact, in
view of (12) we have

GL(θ, φ, Ī , J̄ ) = GR(θ + i�,φ + σπ, Ī , J̄ )

(the part θ Ī + φJ̄ is not translated because the origin of the angle coordinates is chosen on the
left torus, irrespective of which solution is sought here).
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Let SL,R(x, Ī , J̄ ) be the type-2 generating function transforming Cartesian to action-angle
variables for a given perturbed torus and let S0

L,R(x, I, J ) be the corresponding function for
the unperturbed torus. Then these functions are respectively the actions appearing in the WKB
approximation of the corresponding perturbed and unperturbed quasimodes. They are related
by the expression

SL,R(x, Ī , J̄ ) = S0
L,R(x, I, J ) + F

L,R
2 (θ, φ, Ī , J̄ ) − θI − φJ

= S0
L,R(x, I, J ) + (Ī − I )θ + (J̄ − J )φ + GL,R(θ, φ, Ī , J̄ )

(a detailed discussion of this point can be found in [4]). Using θ = ∂S0
L,R(x, I, J )/∂I , and

the analogous expression for the remaining degree of freedom, we may approximate

SL,R(x, Ī , J̄ ) = S0
L,R(x, Ī , J̄ ) + GL,R(θ, φ, Ī , J̄ ) + O(ε2)

to first order in perturbation theory. We therefore find that

SR − S∗
L = iK0 + �G(θ, φ) + O(ε2),

where iK0 = S0
R − S0

L

∗
is the unperturbed action difference and

�G(θ, φ) = G(θ − i�,φ − σπ) − G(θ, φ).

We have suppressed the action dependences in the notation since Ī and J̄ will be fixed
throughout the calculation by Bohr–Sommerfeld quantization conditions. We have also
dropped the labels L and R, adopting from now on the convention that, where no such label is
supplied, we mean generating functions to be those for the left torus. This difference will be
evaluated in a neighbourhood of θ = i�/2, corresponding to the intersection λ∗

L ∩ ̃ ∩ λR .
We now compute the difference �G using canonical perturbation theory. At first order

we have

G(θ, φ) = εG1(θ, φ) + O(ε2),

where G1(θ, φ) satisfies the first-order differential equation [30]

ω
∂G1

∂θ
+ 


∂G1

∂φ
= −V (θ, φ), (17)

where we denote by

{H1} = V (θ, φ) (18)

the oscillating part of the perturbation to the Hamiltonian, expressed as a function of angle
variables. Recall that ω and 
 are respectively the frequencies associated with (real dynamics
of) the angles θ and φ. The textbook solution of this equation is obtained by first writing
V (θ, φ) as a Fourier series

V (θ, φ) =
∑
nk

Vnk einθ+ikφ

and then writing the solution in a similar Fourier series form

G1(θ, φ) =
∑
nk

−Vnk

inω + ik

einθ+ikφ.

This form of the solution is inadequate for our purposes, however, because the Fourier series
for V (θ, φ) will converge only in a strip around the real axis in the θ -plane whereas we need
to understand the solution on at least the entirety of the contour C bounding the fundamental
unit cell B described in section 2.1. Note that since V (θ, φ) (being biperiodic) must have
singularities in this unit cell, the strip in which the Fourier series converges (which cannot
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contain these singularities) can cover at most half of the contour C0/2. In particular the
midpoint i�/2 cannot be contained in the convergent strip.

We therefore start instead with a partial Fourier representation of these functions, writing

V (θ, φ) =
∞∑

k=−∞
Vk(θ) eikφ (19)

and

G1(θ, φ) =
∞∑

k=−∞
Fk(θ) eikφ, (20)

so that

ω
∂Fk

∂θ
+ ik
Fk(θ) = −Vk(θ). (21)

A Fourier expansion in φ can be used because it suffices to know the solution near the real
axis in the φ-plane but we should now solve (21) so that solutions can be extended as far as
needed in the complex θ -plane.

In doing this it will be important to take into account the symmetry

V (θ, φ) = V (θ + i�,φ + σπ) (22)

of the perturbing potential. We note that

�G1(θ, φ) ≡ G1(θ − i�,φ − σπ) − G1(θ, φ)

=
∞∑

k=−∞
�Fk(θ) eikφ,

where

�Fk(θ) = (−1)σkFk(θ − i�) − Fk(θ)

then satisfies the equation

ω
∂�Fk

∂θ
+ ik
�Fk = 0. (23)

Solutions to this equation are of the form

�Fk(θ) = Ak e−ik
θ/ω

so that the difference

�G1(θ, φ) =
∞∑

k=−∞
Ak eikφ−ik
θ/ω =

∞∑
k=−∞

Ak eikα (24)

is a function of the variable α alone, and constant along orbits, as claimed in the previous
section. (We could have obtained the same result by applying the method of characteristics
directly to the equation for �G1(θ, φ).)

The problem now reduces to that of determining the Fourier coefficients Ak . Before
pursuing this calculation further, however, we first consider in more detail the symmetries of
the perturbing potential V (θ, φ), which will allow us to simplify the solution for G1. In later
sections these symmetries will also be useful in determining when �G1 is real, generically
complex or imaginary.
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3.2. Symmetries of the function V (θ, φ)

In solving (17) we will make use of a number of symmetries of the right-hand side V (θ, φ)

and the corresponding Fourier coefficients Vk(θ). We collect these symmetries here for future
reference.

(i) Real period. The real period V (θ + 2π, φ) = V (θ, φ) leads to the condition

Vk(θ + 2π) = Vk(θ). (25)

(ii) Imaginary period. The imaginary period expressed in (22) leads to the condition

Vk(θ) = (−1)σkVk(θ + i�) (26)

when expressed in the Fourier series form (this condition has already been implicitly used
in deducing (23)).

(iii) Conjugation symmetry. Because the function V (θ, φ) is analytically continued from a
real function of real arguments, there is a conjugation symmetry

V ∗(θ, φ) = V (θ, φ),

where in general we denote the conjugate W ∗(θ, φ) of a function W(θ, φ) by W ∗(θ, φ) =
[W(θ∗, φ∗)]∗. In terms of the Fourier series this becomes

V ∗
k (θ) = V−k(θ), (27)

where we use a similar convention to define V ∗
k (θ).

(iv) Reflection in y. Some of the models we examine will possess a symmetry with respect to
reflection in the y degree of freedom and this amounts to V (θ, φ + π) = V (θ, φ) which
means that

Vk(θ) = 0 for odd k.

In other models the perturbing potential will be odd with respect to inversion in y and in
that case V (θ, φ + π) = −V (θ, φ) and

Vk(θ) = 0 for even k.

These symmetries will in particular be useful in determining for which problems the action
perturbation (24) is purely real, purely imaginary or generically complex. These properties
are in turn important in determining the physical behaviour of the splitting and whether it
oscillates or changes monotonically as a function of the perturbation parameter.

3.3. Solving for Fk(θ) using Fourier series

Recall that we compute branches of the complexified tori in the forbidden region, and the
action differences between them, by computing the functions Fk(θ) as solutions of (21). We
have already noted that the textbook solution

Fk(θ) =
∞∑

n=−∞

−Vnk

inω + ik

einθ (28)

is inadequate for our purposes because it converges only in a strip around the real axis whereas
we need to know Fk(θ) along the entire rectangular web W described in section 2.1. Note that
this Fourier-series solution is specific to the boundary condition,

Fk(θ + 2π) = Fk(θ), (29)

on the real axis of the complex θ -plane and therefore describes the perturbed action in a
neighbourhood of the left-hand real torus only. We can, however, use similar Fourier series
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solutions to find solutions in other horizontal strips corresponding to complementary real tori,
or in vertical strips corresponding to a tunnelling loop indicated by dashed lines in figures 1
and 2. By matching these solutions where the domains of convergence overlap we can find
global solutions on the web W and determine the action difference in equation (24). The
procedure to achieve this is outlined in the remainder of this section.

First, in order to extend the solution along the imaginary axis, we take advantage of the
following alternative Fourier representation:

Vk(θ) =
∞∑

m=−∞
vkm eκmθ (30)

of the perturbing term in the Hamiltonian. This Fourier series is consistent with the imaginary
period Vk(θ + 2i�) = Vk(θ) (see (26)) if we choose

κ = π

�
.

The corresponding solution of (21), given by

Fk(θ) =
{

Ck e−ik
θ/ω − ∑∞
m=−∞

vkm

κmω+ik

eκmθ k 
= 0,

C0 − v00
ω

θ − ∑
m
=0

v0m

κmω
eκmθ k = 0,

(31)

converges in a strip around the imaginary axis in the θ -plane and therefore describes the
complexified torus in a neighbourhood of the forbidden segment of the real x-axis connecting
inner turning points. Note that we have included a secular term Ck e−ik
θ/ω because the relevant
boundary condition is (29) and we should not expect the resulting solution to be periodic along
the imaginary axis. In fact it is this lack of periodicity in the imaginary direction that leads to an
action gap between the left- and right-continued tori and which provides the root mechanism
for the energy splittings considered in this paper.

We can determine the coefficient Ck for k 
= 0 by comparing the solutions (28) and (31)
where they both converge, at θ = 0 say, giving

Ck =
∞∑

m=−∞

( vkm

κmω + ik


)
−

∞∑
n=−∞

(
Vkn

inω + ik


)
. (32)

The expression for k = 0 differs only in that the term with m = 0 is excluded from the
first sum (and note that the function V (θ, φ) is constructed so that V00 = 0). In matching
the solution (31) to a solution (28) which is periodic along the real axis, we have extended
the left-hand torus deep into the forbidden region where we expect it to intersect with the
analytically continued right-hand torus. This right-hand torus is obtained by imposing the
condition (29) on the horizontal line Im(θ) = � and, as discussed earlier, the corresponding
solution for Fk(θ) is simply an upwards translation by i� of the solution for the left-hand
torus. It is represented concretely for example by the Fourier series

FR
k (θ) = Fk(θ − i�) =

∞∑
n=−∞

−Vnk

inω + ik

ein(θ−i�),

which converges only in a strip around the line Im(θ) = i�, or by an analogous upwards
translation of the Fourier series in (31), which converges on a strip containing the imaginary
axis.

The difference between these solutions is therefore

�Fk = (−1)σkFk(θ − i�) − Fk(θ),

=
{

Ck[(−1)σk e−k
�/ω − 1] e−ik
θ/ω k 
= 0,

i�
ω

v00 k = 0,
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in the notation of section 3.1 and the net action difference demanded by the splitting formula
is

�G1 = i�

ω
v00 +

∑
k 
=0

Ck[(−1)σk e−k
�/ω − 1] eikφ−ik
θ/ω. (33)

Note that in evaluating this difference we have used the Fourier representation (31), which is
convergent along the entirety of the imaginary axis.

This is an explicit result for the action difference which can be used directly in the splitting
formula. It simply requires that we know the real and imaginary periods and the corresponding
sets of Fourier coefficients Vnk and vkm (which could be determined numerically following a
numerical integration of trajectories, for example). Although the Fourier series approach
applies quite generally and is a useful practical method to obtain the action difference, some
additional properties and symmetries (to be outlined in section 3.5) are not clear in the solution
above and an alternative procedure is therefore outlined in the next section. We emphasize
that both approaches lead ultimately to the same results. The approach in the next section is
particularly useful in problems such as the quartic oscillator where the singularity structure in
the complex angle plane is simple and analytic expressions can be written for the results, but
the Fourier series method has the advantage of being closely related to standard approaches to
real perturbation series.

3.4. Solving for Fk(θ) using an integrating factor

The differential equation (21) for Fk(θ) can also be solved using an integrating factor. We
multiply through by eik
θ/ω and integrate, to give

Fk(θ) = −e−ik
θ/ω

ω

∫ θ

0
Vk(θ

′) eik
θ ′/ωdθ ′ + Fk(0) e−ik
θ/ω. (34)

This result depends on the topology of the contour of integration between 0 and θ so that,
although Vk(θ) is periodic along both the real and imaginary axes of the θ -plane, the function
Fk(θ) is not. For example, a closed circuit around the boundary C of the fundamental unit cell
described in section 2.1 leads to a nonzero result for the integral in (34), receiving contributions
from poles and other singularities of Vk(θ) in the interior of the unit cell. This shows that
Fk(θ) is generically not single valued on C, or more generally on the web W , and cannot then
simultaneously be periodic on the real and imaginary axes.

The initial condition Fk(0) can be determined by specializing (29) to Fk(0) = Fk(2π),

which, on substitution in (34), gives

Fk(0) = 1

ω(1 − e2π ik
/ω)

∫ 2π

0
Vk(θ

′) eik
θ ′/ω dθ ′ (35)

in the case k 
= 0. In the case k = 0 the initial condition F0(0) has no effect on the action
difference �F0(θ) and can be set to zero for convenience.

Using the notation established in equation (24), the required action difference �G1(θ, φ)

is expressed in terms of Fourier coefficients Ak , which we can calculate from

Ak = �Fk(0) = (−1)σkFk(−i�) − Fk(0).

From (34) we deduce that

(−1)σkFk(−i�) = −(−1)σk e−k
�/ω

ω

∫ −i�

0
Vk(θ) eik
θ/ω dθ + (−1)σk e−k
�/ωFk(0). (36)
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Reθ

Imθ

C

ιΘ

2π

ιΘ+2π

Figure 3. The action difference Fourier coefficients Ak can be expressed simply in terms of an
integral over the closed contour C which runs along the boundary of the unit cell, as shown. As
before, the hatched region at the centre is supposed to contain any singularities of Vk(θ).

The integral here can be simplified by first using the translation property described by (26)
and then shifting the limits of the second integral in (36) by i�, to give

(−1)σk e−k
�/ω

∫ −i�

0
Vk(θ) eik
θ/ω dθ =

∫ 0

i�
Vk(θ) eik
θ/ω dθ.

The Fourier coefficients Ak can therefore be written as

Ak = 1

ω

∫ i�

0
Vk(θ) eik
θ/ω dθ + [(−1)σk e−k
�/ω − 1]Fk(0). (37)

When k 
= 0 we can manipulate this expression for Ak , after substitution of (35), into a single
integral

Ak = 1

ω(1 − e2π ik
/ω)

∮
C

Vk(θ) eik
θ/ω dθ (38)

over the contour C which runs along the boundary of the fundamental unit cell, going from
0 to i�, across to 2π + i�, then down to 2π and finally back up to 0 again. A topologically
equivalent contour is illustrated in figure 3.

When k = 0, equation (37) reduces directly to

A0 = 1

ω

∫ i�

0
V0(θ) dθ (39)

and this term can be interpreted in terms of averaging over real and complex tori as follows.
We first recall that

V0(θ) = 〈H1〉φ − 〈H1〉θ,φ,

where the subscripts indicate which angles are averaged over, and then write

A0 = 1

ω

∫ i�

0
(〈H1〉φ − 〈H1〉θ,φ) dθ

= i�

ω

(
1

i�

∫ i�

0
〈H1〉φ dθ − 〈H1〉θ,φ

)
= iτ

(〈H1〉(θ,φ)∈C0×C1 − 〈H1〉(θ,φ)∈CL×C1

)
, (40)

where in the last line we have substituted

τ = �

ω
,

where iτ is the imaginary time taken for a complex trajectory to pass from one barrier turning
point to the other. That is, A0 is proportional to the difference between an average of H1(θ, φ)
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over the complex torus, illustrated by the dashed part of figure 2, and an average of H1(θ, φ)

over one of the real tori.
Note that in the notation used for Fourier series, v00 = 〈H1〉(θ,φ)∈C0×C1 − 〈H1〉(θ,φ)∈CL×C1

and this expression for A0 coincides with the first term in (33). Likewise, if we evaluate the
integral in (38) by substituting the appropriate Fourier series for Vk(θ) along each of the four
segments of C (namely (30), its equivalent along the real axis and their respective translations
by 2π and i�) then we recover the Fourier coefficients in the sum in (33). Therefore the final
results of this section are equivalent to those of Fourier series approach, although arrived at
from a different point of view.

3.5. Implications of symmetry

From the solution outlined in section 3.4, we now show that the first-order action difference
�G1(θ, φ) in (24) may be either purely real or purely imaginary, according to the underlying
symmetry of the problem. We achieve this by first using the conjugation and translation
symmetries discussed in section 3.2 to show that, for either of the underlying symmetry types,
we have

A∗
k = −(−1)σk ek
�/ωA−k. (41)

This relationship can be obtained for k 
= 0 by conjugating the integral (38) and using (27)
to get

A∗
k = 1

ω(1 − e−2π ik
/ω)

∮
C∗

V−k(θ
′) e−ik
θ ′/ω dθ ′.

On noting that the conjugate contour C∗ can be obtained from C by reversing it and translating
downwards by i�, and then using the translation symmetry expressed in (26), the result follows.
A similar proof is obtained in the case k = 0 on conjugating the integral in (39)—note in
particular that A0 is always imaginary (see also (40)).

We are free to choose the integration contour in (15) so that it corresponds to fixing
θ = i�/2 and letting φ vary from 0 to 2π (see (16)). Although other choices are possible,
this one makes the symmetries of the resulting integral more obvious. Then it is not hard to
see as a result of (41) that conjugating the action difference in (24) gives

[�G1(i�/2, φ)]∗ =
∞∑

k=−∞
− (−1)σkAk eikα = −�G1(i�/2, φ + σπ).

We immediately deduce the following.

(i) If the underlying symmetry is Rx (so that σ = 0) then

[�G1(i�/2, φ)]∗ = −�G1(i�/2, φ)

is pure imaginary and the splitting grows or decays exponentially as a function of ε.
(ii) If the underlying symmetry is Rxy , then the action difference may have real and imaginary

parts that are both nonzero. However, in view of the identity

[�G1(i�/2, φ)]∗ = −�G1(i�/2, φ + π)

that holds in that case, the modulation integral in (4) is nevertheless real. The splitting is
then an oscillatory function of ε.

(iii) If the perturbation is in addition odd with respect to reflection in y, then the Fourier series
has terms with odd k only and �G1(i�/2, φ) is real.
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(iv) If the symmetry is Rxy and the perturbation is even with respect to reflection in y, then the
Fourier series has terms with even k only and �G1(i�/2, φ) is imaginary. In this case,
however, we can alternatively take the underlying symmetry to be Rx and the physics of
the problem is no different from case (i). All that changes is the convention for declaring
which states are even or odd.

We summarize the situation by writing the modulation integral in (4) in the form

M(x) = exf0〈ex(f1(φ)+if2(φ))〉φ∈C1 , (42)

where f0, f1(φ) and f2(φ) are all real and

f0 = iA0 = (〈H1〉(θ,φ)∈CL×C1 − 〈H1〉(θ,φ)∈C0×C1

)
τ

and

f1(φ) + if2(φ) =
∑
k 
=0

iAk eikα

=
∑
k 
=0

i

ω(1 − e2π ik
/ω)

∮
C

Vk(θ
′) eik
θ/ω dθ eik(φ−i
�/(2ω))

= −
∑
k 
=0

eikφ

2ω sin πk
/ω

∮
C

Vk(θ
′) eik
(θ−θc)/ω dθ, (43)

where θc = π + i�/2 is the centre of the unit cell containing the contour C.
When the underlying symmetry is Rx , then f2(φ) = 0 and the modulation function

simplifies to

M(x) = exf0〈exf1(φ)〉φ∈C1 .

When the underlying symmetry is Rxy , then f1(φ) and f2(φ) are respectively given by the
terms with even and odd k in the sum above. Furthermore, if H1 is an odd function of y, then
f0 = f1(φ) = 0 and

M(x) = 〈eixf2(φ)〉φ∈C1 .

4. Some examples

We now apply the calculation of the previous section explicitly to model Hamiltonians, each
of them illustrating one of the standard spatial symmetries in two-dimensional problems.

4.1. The quartic double well perturbed by H1 = x2y2

We first consider the unperturbed Hamiltonian given in (9). Since the potential in x is a simple
quartic and the solution expressible in terms of Jacobi elliptic functions, we can exploit the fact
that the only singularities of x(θ) are simple poles at the centres θlm = (2l +1)π + i(m+1/2)�

of the unit cells in the complex θ -plane. Around each such pole the Laurent series for x(θ)

begins

x(θ) = (−1)m
√

2i

(
ω

2(θ − θlm)
− θ − θlm

3ω
+ · · ·

)
. (44)

In particular, an evaluation of (38) is obtained using the residue calculus centred on
θc = θ11 = π + i�/2. Here we add the perturbation H1 = x2y2 and recall that the underlying
symmetry in this case is Rx and that for this symmetry we have predicted positive splittings
with an exponential dependence on the perturbation parameter.
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Figure 4. Quantum and semiclassical results for the ratio M = �E(ε)/�E(0) are shown for
the perturbation H1 = x2y2. The continuous curves are the modulation function in (45) and
the circles represent quantum data obtained from a numerical diagonalization of the Hamiltonian.
These illustrate splittings corresponding to 
 = 1, h̄ = 0.05 and a quantum number for the x
degree of freedom of n = 3, for which the corresponding one-dimensional mean energy level
En = 0.469 . . . and the unperturbed splitting is �E(0) = 8.083 . . . × 10−8.

Using the standard expression y = √
2J/
 sin φ relating the action-angle variables of a

harmonic oscillator to the position coordinate, we can write y2(φ) = J (1 − cos 2φ)/
, and
the oscillating part of the perturbation can be written in the form (19) with

V0(θ) = J



{x2(θ)}

and

V±2(θ) = −Jx2(θ)

2


and Vk(θ) = 0 for all other k. The terms in the modulation integral (42) can therefore be
written more explicitly as

f0 = iA0 = �J


ω

[
1

2π

∫ 2π

0
x2(θ) dθ − 1

i�

∫ i�

0
x2(θ) dθ

]
and

f1(φ) =
∑
k 
=0

iAk eikα = − πJ

sin 2π
/ω
cos 2φ

(note that f2(φ) = 0), where the latter has been evaluated by performing the integral in
(43) using the residue calculus. The modulation factor for this perturbation can therefore be
written as

Mx2y2

( ε

h̄

)
= eεf0/h̄

1

2π

∫ 2π

0
e−z cos 2φ dφ = eεf0/h̄I0(z), (45)

where

z = πεJ

h̄ sin 2π
/ω

and I0(z) is a modified Bessel function.
A comparison between this result and a completely quantum-mechanical numerical

calculation is shown in figure 4. To interpret this figure, let n and m respectively be quantum
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Figure 5. Quantum and semiclassical results for the ratio M = �E(ε)/�E(0) are shown for the
perturbation H1 = xy, with parameters for the unperturbed problem the same as for the illustration
in figure 4. The curve is the modulation function in (45) and the circles represent quantum data.
For each value of m we let the value of ε range from 0 to 0.3.

numbers for the x and y degrees of freedom and recall that in the unperturbed problem the
splittings are independent of m. The data shown in figure 4 pertain to a set of doublets with a
common value n = 3 (where n = 0 defines the ground state) so that when ε = 0 the splittings
for all of these doublets have the same value. As ε increases from 0 these splittings fan out
and change differentially with m. The continuous curves in figure 4 represent the uniform
semiclassical prediction in (45), in which we set J = (m + 1/2)h̄ and the open circles are
exact quantum data. It is evident that the theory developed here provides a good description
of the quantum data, even though the quantum numbers involved are not very large.

4.2. The quartic double well perturbed by H1 = xy

We now consider the perturbation H1 = xy, for which the underlying symmetry is Rxy . In
this case the oscillating part V (θ, φ) is simply H1(θ, φ) itself and we have

V±1(θ) = ∓i

√
J

2

x(θ), (46)

and Vk(θ) = 0 for k 
= ±1. Evaluation of (43) by the calculus of residues can once again be
achieved on substitution of (44) and this leads to

f2(φ) =
∑
k 
=0

Ak eikα = π

sin π
/ω

√
J



cos φ.

The modulation factor is therefore

Mxy

( ε

h̄

)
= 1

2π

∫ 2π

0
eiz cos φ dφ = J0(z),

where

z = πε

h̄ sin π
/ω

√
J




and J0(z) is a Bessel function (recall that f0 = f1(φ) = 0 in this case).
A numerical illustration is shown in figure 5, with parameters in the unperturbed problem

the same as used for figure 4. However, we plot the splittings scaled by their unperturbed
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value as a function of the parameter z (with the substitution J = (m + 1/2)h̄) rather than of
the raw perturbation parameter ε. As predicted by the perturbation calculation, we find that
the splittings do indeed oscillate as a function of the perturbation parameter and the splittings
that fan out from a given unperturbed splitting depend on m, h̄ and ε largely through the single
variable z. In general it is found that the range of perturbation strengths for which the current
uniform approximation provides a good description of tunnelling depends on the energy in the
x degree of freedom, with the range decreasing as this energy approaches the barrier top [29].
Analytic continuation of the first order perturbative approximation into the complex angle
plane evidently fails sooner as the real tori approach the limiting separatrix case and become
pinched at the barrier energy. The numerical examples shown here are typical of energies
midway between the bottom and barrier of the double well. Closer to the barrier top and for
similar values of h̄, the quantum data may part from the modulation integral before a complete
oscillation has taken place, although as h̄ decreases multiple oscillations are again revealed
(for comparable torus actions). The range of z over which the modulation integral provides a
correct description of the splitting increases as h̄ decreases [29], although this may at the same
time correspond to a decreasing range in the raw perturbation parameter ε. The range also
depends of course on other parameters such as 
 (which controls proximity to resonance). A
calculation to higher order in perturbation theory, which has not been performed, would be
useful for better understanding the limitations in the applicability of the current approximation.

4.3. Pendulum Hamiltonians

Although the derivation of the splitting was presented for the special case of tori separated
by a potential barrier in configuration space, the results are canonically invariant and should
apply more generally. We illustrate this here by considering a pendulum Hamiltonian in one
degree of freedom coupled to a harmonic oscillator in another. The unperturbed Hamiltonian
is

H0 = 1
2p2

x + 1
2p2

y + cos x + 1
2
2y2

and we consider perturbation by

H1 = εpxpy,

for which the underlying symmetry is of type Rxy . This particular perturbation is chosen
for the convenience of numerical quantum calculations rather than for any special features
of the semiclassical calculation. We note that pendulum Hamiltonians are useful models of
resonances in generic near-integrable problems and the sort of application illustrated here may
be important for quantitative treatments of resonance-assisted tunnelling [12].

We consider energies greater than the separatrix energy E = 1 of the pendulum. In
this case tunnelling is between tori for which momentum px rather than position x has
different sign. If we zero the x-angle θ of the unperturbed problem at the point x = 0
and px = −√

2(E − 1) < 0, then the discussion of section 2.1 carries over essentially
unaltered except for the fact that the real tori λL and λR are characterized by different signs
of px rather than of x. Starting from θ = 0, integration in imaginary θ defines a periodic
orbit whose period in θ we denote by 2i�. It cycles between λL and λR and is such that
x(θ + i�) = −x(θ) and x(θ) is once again a biperiodic function of the type illustrated at the
left of figure 1. The symmetries Rx and Rxy act on angle variables according to the form
given in (12). The pendulum analogue of the right half of figure 1 is given in figure 6.

The one-dimensional solutions for (x(θ), px(θ)) can once again be written in terms
of Jacobi elliptic functions (see [31] for example) and one can show in particular that the
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Figure 6. The boundaries if the unit cell in the complex angle plane also map to real and complex
orbits, as shown schematically here in a phase plane, in the case of a pendulum Hamiltonian.

 0  1  2  3  4  5  6
-1

 0

 1

z

M

Figure 7. Quantum and semiclassical results for the ratio M = �E(ε)/�E(0) are shown
for the perturbation H1 = pxpy of the pendulum Hamiltonian with 
 = 1 and h̄ = 0.04.
The data correspond to states whose energy in the x degree of freedom is En = 1.2711 . . . ,

the sixth level above the separatrix energy, and whose splittings have the common value
�E(0) = 1.356 . . . × 10−9 in the unperturbed limit. Except for the case m = 0, which falls
visibly below the theoretical prediction for z < 1, it is not possible to distinguish data for different
values of m in this case and we have not labelled them here.

singularities of px(θ) are simple poles at the centres of the unit cells, around each of which
we have the Laurent series

px(θ) = (−1)mi

(
2ω

θ − θlm

+
θ − θlm

3ω
+ · · ·

)
.

Inserting

V±1(θ) =
√


J

2
px(θ)

in (43) and evaluating the contour integral using the calculus of residues gives

f2(φ) = 2π
√

2
J

sin π
/ω
sin φ

(and f0 = f1(φ) = 0). The modulation factor

Mpxpy

( ε

h̄

)
= J0(z)
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in this case is therefore the same as that found in the xy perturbation of the quartic oscillator,
up to a numerical factor in the argument

z = 2π
√

2
Jε

h̄ sin π
/ω

of the Bessel function.
A numerical illustration of this result, analogous to figure 5, is shown in figure 7. Here

we have once again plotted the ratio M = �E(ε)/�E(0) as a function of the parameter z

for a collection of states with a common quantum number in the x degree of freedom. In this
illustration we see that the semiclassical approximation describes the computed splittings over
the first sign change but not for several oscillations as we had in the illustration used for the
case of the quartic oscillator. As in previous cases, the range of z over which the perturbative
approximation gives a good description of the data is found to depend on parameters such as

 proximity to the separatrix energy in the x degree of freedom, and, of course, h̄.

5. Conclusion

We have shown that the essential qualitative behaviour of tunnel splittings in near-integrable
systems can be captured by a semiclassical approximation which incorporates perturbative
approximation of the complexified invariant tori. In two-dimensional potentials, regimes
corresponding to two distinct symmetry types have been illustrated. In the case where the
symmetry is of reflection in one coordinate we find that splittings remain positive and vary
exponentially with parameters. When the underlying symmetry is inversion through a point,
however, splittings oscillate as a function of parameters and can change sign and even vanish
at certain parameter values.

The essential mechanism underlying the change from integrable to near-integrable
behaviour is a breaking of global symmetry in the complexified torus. While analytic
continuation of two congruent tori leads to identical complex manifolds in the integrable
case, in near-integrable problems the corresponding analytic continuations are distinct. We
remark that an analogous symmetry breaking occurs in the toral structure underlying resonant
states in metastable wells. In that case, however, breaking integrability introduces a distinction
between a continued torus and its complex conjugate rather than between ‘left’ and ‘right’
tori as in splitting calculations. A real torus corresponding to bound motion in an exactly
integrable metastable well will, when continued across a barrier, define a real manifold of
orbits escaping to infinity. A perturbative calculation such as used here indicates that a small
perturbation turns that real manifold slightly complex on the unbound side of the barrier. The
corresponding wavefunction would therefore exhibit a strong directionality due to the fact that
the resulting action variations have a nonzero imaginary part, which is a feature not seen in
exactly integrable systems. This mechanism could well lead to strong directionality in the
emission patterns of slightly nonspherical optical resonators similar to that recently reported
in [32–34].

Finally, we emphasize that the ability of the perturbation calculation here to describe
splittings arises despite the fact that the exact classical data underlying (2) are not strictly
defined due to the intervention of natural boundaries. An important question which this work
has not addressed is at what point, as h̄ decreases for fixed ε or as ε increases for fixed h̄ for
example, (2) fails entirely to give a description of tunnelling because the underlying classical
geometry cannot be described exactly. A better understanding of this issue should come from
working to higher order in perturbation theory although the ensuing calculation would be more
cumbersome to implement than the one we have done.
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Appendix. Derivation of the splitting formula

In this appendix we provide some additional detail regarding the derivation of the splitting
formula (15) from Herring’s integral. We insert the WKB approximations for the quasimodes
ψL and ψR in the integral and retain only the diagonal terms in the resulting sum over
branches since the off-diagonal terms have rapidly varying phase and contribute negligibly to
the integral. The density functions in the amplitudes of ψL and ψR have the form

ρL,R = 1

2π

∂(θ, φ)

∂(n, s)

∣∣∣∣
λL,R

and we approximate these by their unperturbed values. Taking advantage of the fact that λ∗
L

and λR are actually the same manifold in the unperturbed problem, the Herring integral can
therefore be written approximately in the form

�E ≈
∑

branches

h̄

2π2

∫


A ei(SL−S∗
R)/h̄ ds, (A.1)

where the amplitude can be written as

A = ṅ
∂(θ, φ)

∂(n, s)

and where ṅ is the rate of change of n along an orbit on the complex torus with position (n, s)

(and arises from the normal derivative of the phase functions on λ∗
L and λR). We simplify this

amplitude term further by rewriting it using the new angle-like variables (α, t) defined in (14).
We note that ṫ = 1 and that α is constant on each individual orbit. We can therefore write

ṅ =
(

∂n

∂t

)
α

= ∂(n, α)

∂(t, α)
,

where the subscript α indicates that the variable is held fixed in the partial derivative. Repeated
use of the chain rule then allows one to simplify the amplitude A as follows:

A = ∂(θ, φ)

∂(t, α)

∂(n, α)

∂(n, s)
= ω

(
∂α

∂s

)
n

= ω

(
∂α

∂s

)


.

This enables us to convert the sum over branches and integral with respect to s into a simple
integral with respect to α according to∑

branches

∫


A ds → ω

∫ 2π

0
dα

and the Herring integral then reduces to (15), as required.
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